

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Scheme of Instruction, Evaluation and Syllabi of

B.E. HONOR in VLSI DESIGN

With effect from Academic Year 2024-25

UNIVERSITY COLLEGE OF ENGINEERING (Autonomous) Osmania University Hyderabad – 500 007, TS, INDIA

SCHEME OF INSTRUCTION AND EXAMINATION

Scheme and Syllabus for

B.E. HONORS IN VLSI DESIGN

SNo	Code	Course Title		chem struc		Contact		cheme valuat	Credits	
			L	Т	P	Hrs/Wk	Hrs	CIE	SEE	
			Th	eory						
1	HR501EC	Advanced System Design	3	-	-	3	3	40	60	3
2	HR601EC	Fundamentals of System Verilog	3	-	ı	3	3	40	60	3
3	HR602EC	Design for Testability	3	-	-	3	3	40	60	3
4	HR701EC	Intelligent CAD	3	-	-	3	3	40	60	3
5	HR702EC	CMOS Analog and Mixed Signal IC Design	3	-	-	3	3	40	60	3
6	HR851EC	HR-Project Work	1	-	6	6	ı	1	100	3
		Total	15	-	6	21	15	200	400	18

Course Code		Course Title						
HR501EC		Advanced System Design						
Prerequisite	Con	tact Hou	ırs Per V	Week	CIE	SEE	C 1'	
	L	T	D	P	CIE	SEE	Credits	
-	3	-	-	-	40	60	3	

Course Objectives

- 1. The objectives of this course are to provide knowledge on
- 2. To understand the concept of various casting processes & furnaces.
- 3. To gain knowledge on various metal forming processes like rolling & extrusion.
- 4. To know the principle of forging and various press working operations.
- 5. To familiarize the different techniques of joining processes.
- 6. To understand the manufacturing of plastics, powder metallurgy and composites.

Course Objectives

After completing this course, the student will be able to:

- 1. Understand the basic working principles of casting, forming and welding.
- 2. Some understanding of types, manufacturing processes and applications of plastics and composite materials.
- 3. Recommend appropriate part manufacturing processes when provided a set of functional requirements.
- 4. Ability to analyze problems on forging, rolling, drawing and extrusion.
- 5. Communicate effectively with industry personnel by developing a manufacturing-centric vocabulary.

	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	2	-	-	-	-	-	-	1
CO2	2	2	2	1	2	-	-	-	-	-	-	1
CO3	3	2	3	2	3	-	-	-	1	-	-	1
CO4	3	2	3	2	3	-	-	-	1	1	-	1
CO5	1	2	3	1	2	-	-	-	2	1	-	1

Correlation rating: Low / Medium / High: 1 / 2 / 3 respectively

UNIT-I:

Introduction to Advanced System Design (ARM Cortex IP): The ARM RISC design philosophy, System hardware – AMBA bus, System software; ARM registers bank, status registers; vector table, data flow model.

UNIT-II:

Cortex M4 SoC Architecture: Cortex M SoC Processor: introduction – Block diagram; Interrupts and Processor Reset Sequence.CortexM4, STM32F features; Memory Map; ARM Bus Matrix; Nested Vectored Interrupt Controller (NVIC), Interrupts Vs Exceptions; Cortex M Processor Modes.

UNIT-III:

ARM Instruction Set Architecture (ARM ISA): Fundamentals of ARM instructions, ARM Assembly instructions: Data processing, Branching, Load-store, SWI and Program Status Register instruction. Thumb ISA.

UNIT-IV:

SoC Programming (STM32F): GPIO Management: Accessibility & Configurations; Timer Programming; UART: Configuration, baud rate generation, UARTx drivers in C; I2C: Features, modes, Pins and Registers; I2C Driver Programming; SPI: master/slave operation, Pins & Registers; ADC Driver for data sampling & processing needs.

UNIT-V:

ARM Interfacing with Real World: Interfacing of switches, LEDs; Seven Segment Display; Matrix Keypad; LCD – Design options; DC Motor & Stepper Motor interfacing designs in Embedded C/C++; debugging methods.

Suggested Reading

- 1. ARM System-on-chip Architecture by Steve Furber, Pearson Education, ISBN 978-81-317-0840-8, 2E, 2012.
- 2. STM32 ARM Programming for Embedded Systems, Muhammad Ali Mazidi, Shujen Chen, Eshragh Ghaemi ISBN: 978-099-792-5944, 2018
- 3. Muhammad Tahir and Kashif Javed, "ARM® Microprocessor Systems: Cortex®-M Architecture, Programming, and Interfacing", CRC Press, © 2017 by Taylor & Francis Group, LLC.

Course Code		Course Title						
HR601EC		Fundan	nentals o	of Systen	n Veriloş	Core		
Prerequisite	Con	tact Hou	ırs Per V	Week	CIE	SEE	C 1'	
	L	T	D	P	CIE	SEE	Credits	
-	3	-	-	-	40	60	3	

Course Objectives: The course is taught with the objectives of enabling the student to:

- 1. To Know Basics of System Verilog
- 2. To Familiarize with Object Oriented Programming
- 3. To Explore Randomization and Threads in System Verilog
- 4. To Know Test Coverage in System Verilog

Course Objectives: On completion of the course, students will be able to

- 1. To understand the basic concepts of Design Verification
- 2. To Construct User Defined Data Types in System Verilog
- 3. To Create Object Oriented Programming Environment
- 4. To Create Object Oriented Programming Environment
- 5. To understand the Coverage Concepts

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	-	-	-	-	-	-	-	-	-
CO2	1	1	2	2	3	-	-	-	-	-	-	1
CO3	1	2	2	2	3	-	-	-	-	-	-	1
CO4	1	2	2	2	3	-	-	-	-	-	-	1
CO5	1	2	2	2	3	-	-	-	-	-	-	1

Correlation rating: Low / Medium / High: 1 / 2 / 3 respectively

UNIT-I:

Verification Guidelines: Introduction, Verilog vs System Verilog, Verification Process, Verification Plan, Verification Methodology Manual, Basic Testbench Functionality, Directed Testing, Testbench Components, Layered Testbench, Building a Layered Testbench, Simulation Environment Phases

UNIT-II:

DATA TYPES: Built-in Data Types, Fixed-Size Arrays, Dynamic Arrays, Queues, Associative Arrays, Linked Lists, Array Methods, choosing a Storage Type, Creating New Types with typedef, Creating User-Defined Structures, Enumerated Types, Constants, Strings, Net Types **Tasks & Functions:** Tasks, Functions, and Void Functions, Routine Arguments, Local Data Storage, Time Values, Procedural Statements

UNIT-III:

Basic OOP concepts:Object Oriented Programming significance and advantages, classes, objects, objecthandles, methods, Static and Global Variables, using one class inside another class, Dynamic objects, copying objects, Public Vs Local and Building a test bench. Inheritance, Overriding, Data Hiding and Encapsulation, Abstract Classes and Virtual Methods. Scope Resolution Operator, Classes Extern Methods, type def classes

.

UNIT-IV:

Randomization: Randomization in System Verilog, Constraint Details,, Solution Probabilities, Controlling Multiple Constraint Blocks, Valid Constraints, In-line Constraints, The pre_randomize and post randomize Functions, Common Randomization Problems, Iterative and Array Constraints **THREADS AND INTERPROCESS COMMUNICATION:** Interprocess Communication, Events, Semaphores, Mailboxes.

UNIT-V:

Coverage: Introduction to Coverage, Coverage Types, Functional Coverage Strategies, Anatomy of a Cover Group, Triggering a Cover Group, Data Sampling, Cross Coverage Introduction to Universal Verification Methodology (UVM)

Suggested Reading

- 1 Christ Spear and Greg Tumbush, System Verilog for Verification, 3 rd ed., Springer, 2012
- 2 Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vissides, John, Design Patterns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley 1995
- 3 Sutherland, Stuart, Davidmann, Simon, and Flake, Peter. SystemVerilog for Design. Norwell, MA: Kluwer Academic Publishers, 2004

Course Code		Core/PE/OE								
HR602EC		Design for Testability								
Prerequisite	Contac	t Hours	Per We	eek	CIE	SEE	C 1'			
	L	T	D	P	CIE	SEE	Credits			
DSD	3	-	-	-	40	60	3			

Course Objectives: The course is taught with the objectives of enabling the student to:

- 1. To Understand testability fundamentals and fault models
- 2. To understand the significance of fault simulation
- 3. To understand test generation for SSFs
- 4. To learn about scan architectures
- 5. To understand specific and random BIST.

Course Objectives: On completion of this course, the student will be able to :

- 1. Understand modeling at various abstraction levels, delay and logic simulation
- 2. Understand fault classes and their models
- 3. Understand and apply test generation algorithms for SSFs
- 4. Understand boundary scan standards
- 5. Understand BIST architectures

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	2	-	-	-	-	-	-	-	1	-	-	1	2	-
CO3	2	2	2	-	-	-	-	-	1	-	-	1	2	-
CO4	2	2	-	-	-	-	-	-	1	-	-	1	2	-
CO5	2	1	-	-	-	-	-	-	-	-	-	1	1	-

Correlation rating: Low / Medium / High: 1 / 2 / 3 respectively

UNIT-I

Introduction to Test and Design for Testability (DFT): Fundamentals. Modeling: Modeling digital circuits at logic level, register level and structural level.

Logic Simulation: Types of simulation, Delay models, Element evaluation, Hazard detection, Gate level event driven simulation

UNIT-II

Fault Modeling – Logic fault models, Fault detection and redundancy, Fault equivalence and fault location. Single stuck and multiple stuck – Fault models. Fault simulation applications, General techniques for Combinational circuits

Unit -III

Test Generation algorithms for SSFs: Combinational Circuits-Fault oriented ATG- algorithms and selection criteria, fault independent ATG, ATG for sequential circuits using iterative array model.

UNIT-IV

Design for testability: Testability trade-offs, techniques. Scan architectures and testing – controllability and absorbability, generic boundary scan, full integrated scan, storage cells for scan design. Board level and system level DFT approaches. Boundary scan standards.

UNIT-V

Built In Self-Test (BIST): BIST concepts, Specific BIST architectures – CSBL, BILBO, Random logic BIST-BIST process- Pattern generation – Response compaction, Circuit initialization, Test point insertion.

Suggested Reading

- 1. Miron Abramovici, Melvin A. Breur, Arthur D. Friedman, Digital Systems Testing and Testable Design, Jaico Publishing House, 2001
- 2. M.L. Bushnell and V.D. Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2002
- 3. Robert J. Feugate, Jr., Steven M. Mentyn, Introduction to VLSI Testing, Prentice Hall, Englehood Cliffs, 1998
- 4. Parag. K. Lala, "Fault tolerant and fault testable hardware design", BS Publications, 2002